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Abstract
The mobility of charge carriers in a semiconductor nanowire is explored as
a function of increasing radius, assuming low temperatures where impurity
scattering dominates. The competition between increased cross-section and
the concurrent increase in available scattering channels causes strongly non-
monotonic dependence of the mobility on the radius. The inter-band scattering
causes sharp declines in the mobility at the wire radii at which each new
channel becomes available. At intermediate radii with the number of channels
unchanged the mobility is seen to maintain an exponential growth even with
multiple channels. We also compare the effects of changing the radial scaling
of the impurity distribution. We use transverse carrier wavefunctions that
are consistent with boundary conditions and demonstrate that the δ-function
approximate transverse profile leads to errors in the case of remote impurities.

1. Introduction

The relentless miniaturization of devices has made the physics of lower dimensions a
commonplace experimental reality today. A variety of materials are routinely fabricated into
nanometre scale elements by research groups around the world; at low temperatures, nanoscale
wires can physically behave as one-dimensional conductors in the sense that the carriers are
confined to a single, or at most a limited number,of quantum modes or channels in the transverse
directions. The study of transport in such one-dimensional conductors continues to reveal novel
physical behaviour. In this context semiconducting nanowires in particular have been the
focus of sustained study because of the ever-growing technological impact of semiconductors.
Several semiconducting materials are being employed to grow nanowires, and to fabricate
elementary devices, including silicon [1, 2], gallium arsenide [3, 4], germanium [5, 6], indium
phosphide [7, 8] and indium arsenide [9].
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The carrier mobility is obviously a critical parameter characterizing the transport properties
and ultimately the applications potential of a semiconductor nanowire. Experimental studies
frequently cite the observed mobility range for samples of interest. For quasi one-dimensional
wires made of a specific semiconducting material, the mobility of the carriers depends on
several factors, such as the available scattering mechanisms for the carriers, the carrier
concentration, the temperature and the physical dimensions of the wire. Numerous theoretical
papers [10–18] have studied the influence of essentially every relevant physical parameter on
the mobility in ultra-small semiconductor wires. However, such studies have generally been
in regimes where either (i) the wires are thick enough and the temperatures sufficiently high
that the transport has bulk behaviour, or (ii) they are in the extreme size quantized limit with
only one or two channels available. Therefore it is of interest to see how the mobility in a
semiconductor nanowire behaves when the number of available channels increases as the wire
radius becomes larger and the system deviates from the extreme size quantization limit. That
is our goal in this paper. A strong practical motivation exists because with current fabrication
methods it is already possible to grow nanowires with specific diameters with a precision of
within 10% standard deviation [19–21], and that is certain to improve rapidly with time. We
anticipate that careful controlled measurements will be available in the future that will reveal
some of the features of the carrier mobility presented in this study.

In some earlier descriptions of mobility in wires at the size quantized regime artificial
transverse profiles were sometimes used for the carrier concentration, chosen primarily for
mathematical convenience [11, 14]. We treat the carrier transverse motion quantitatively using
carrier density profiles that are consistent with physical boundary conditions and considering
multiple distinct transverse modes. Size quantization is most pronounced in the regime of
very thin wires and low temperatures. Phonon scattering is suppressed at sufficiently low
temperatures, so in this paper we work in a regime in which the mobility is mainly determined
by impurity scattering. Some recent studies [17] have considered impurities concentrated on
the axis. Here, we instead take the impurities to be distributed outside the region of high carrier
density since this captures modulation doping [22] or surface roughening effects resulting from
some nanowire fabrication methods.

The rest of the paper is arranged as follows. In section 2, we develop the relaxation time
description of the mobility applied to one-dimensional systems. We specialize to nanowires
with a circular cross-section in section 3 and derive the impurity scattering matrix elements.
In section 4, we compute the radial scaling of those matrix elements and of the carrier mobility
assuming a surface distribution of impurities. In section 5, we present the results of our
numerical calculations and our observations regarding the behaviour of the mobility and related
properties as a function of wire radius.

2. Mobility in one dimension in terms of relaxation times

The size quantization limit is most easily achieved at low temperatures when most of the
carriers have insufficient energy to populate higher channels. The effect of phonon scattering
is negligible at sufficiently low temperatures and impurity scattering is dominant. In order
to focus exclusively on the impurity scattering mechanism we consider the degenerate limit
corresponding to T = 0. Our description will be based on the relaxation time approximation
to the Boltzmann equation that approximates the collision term by the quotient of the deviation
from equilibrium of the Fermi distribution function and a characteristic relaxation time. In
quasi-one dimension, the distribution function fi (k) carries a continuous label k for the
wavevector along the length of the wire and a set of discrete channel indices, denoted by
i , that label the degrees of freedom in the restricted transverse dimensions; the same labelling
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is used for other physical parameters. Solving the Boltzmann equation in the relaxation time
approximation results in a set of equations for the carrier relaxation times τi of each channel [23]
for a specific energy E :

1

τi (E)
=

∑

j,k′
Si, j (k, k′)

{
1 − τ j(E)

τi(E)
cos(φ)

}
. (1)

Here Si, j (k, k′) is the scattering amplitude from a state in channel i with wavevector k to another
in channel j with wavevector k′. The scattering mechanism satisfies Si, j (k, k′) = Sj,i (k′, k).
The angle φ is between the initial k and the final k′ wavevectors.

2.1. Scattering matrix in one dimension

In one dimension the wavevectors are scalars, so k = ±k, allowing only two possible values
for the scattering angle, φ = 0, π . The total energy of a carrier in the i th channel has two
parts:

E = h̄2

2m
(k2 + κ2

i ), εi (k) = h̄2

2m
k2. (2)

The longitudinal energy εi (k) is assumed parabolic with the lattice potential of the
semiconductor incorporated into the effective mass m taken to be approximately the same
for all channels. The transverse energy h̄2κ2

i /2m belongs to a discrete spectrum of energies
determined by the boundary conditions of the transverse profile of the wire.

We carry out the sum over final momenta in equation (1) using the Fermi’s Golden rule
expression for the scattering amplitude:

∑

k′
Si, j (k, k′) = L

h̄

∫
dk j |〈k ′, j |V |k, i〉|2 δ

(
h̄2

2m
(k2 + κ2

i ) − h̄2

2m
(k ′2 + κ2

j )

)

=
∑

±

mL

h̄3k ′ |〈±k ′, j |V |k, i〉|2. (3)

Energy conservation determines the final wavevector given the initial one and the specific

channels involved, k ′ =
√

k2 + (κ2
i − κ2

j ).

2.2. Mobility in one dimension

A knowledge of the scattering matrix determines the relaxation times which in turn determine
the electron mobility for each channel in the wire through the expression

µi = q
∑

k v2
k [τi(E)∂εi (k) fi (k)]∑

k fi (k)
(4)

where the carrier velocity for (2) is vk = h̄k/m. The derivative is with respect to the energy of
the free carriers. With EF denoting the one-dimensional Fermi energy, we can define Fermi
energies for individual channels Ei = EF − h̄2

2m κ2
i and the associated Fermi wavevectors.

Note that we leave out the label F for Fermi surface quantities for individual channels as
superfluous since, as we will see presently, we will only be working with Fermi surface values
for each channel. At low temperatures where impurity scattering is most pronounced, the
Fermi distribution function is essentially at the degenerate limit:

fi (k) = θ(Ei − εi (k)), ∂εi (k) fi (k) = −δ(Ei − εi (k)). (5)
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Allowing for spin degeneracy, the linear density of carriers in the i th channel is given by

nLi = 2
∫ ∞

−∞
dk

2π
θ(Ei − εi(k)) = θ(Ei)

2ki

π
. (6)

For a specific carrier density, n = N/V , and cross-section A (assumed uniform) of the wire
the linear density is nL = n A. Then the one-dimensional Fermi energy EF can be determined
by adding together the densities (6) of each channel:

π

2
nL =

∑

i

θ

(
EF − h̄2

2m
κ2

i

) √
2m

h̄2 EF − κ2
i (7)

where θ(x) is the Heaviside unit step function. The mobility in each channel becomes

µi = −θ(Ei)
2qπ

2ki

∫ ∞

−∞
dk

2π

h̄2k2τi(E)

m2
δ

(
Ei − h̄2k2

2m

)

= −θ(Ei)
qτi(EF)

m
. (8)

The average mobility for electrons is then given by

µ =
∑

i nLiµi∑
i nLi

= θ(Ei)
e

m

∑
i kiτi(EF)∑

i ki
. (9)

In the degenerate limit the relaxation times have to be evaluated only at the Fermi surface
determined by the total carrier density in the wire and the wire radius.

3. Cylindrical nanowires

We will now specifically consider nanowires with an uniform cylindrical cross-section, and
a Coulomb scattering potential arising from ionized impurities. At low temperatures where
impurity scattering is dominant a Coulomb potential is an appropriate choice for the scattering
potential V in typical low-dimensional systems. The natural basis consists of a product
of transverse functions involving Bessel functions and a plane wave corresponding to the
longitudinal part. The matrix element due to an impurity at r0 ≡ {z0, r0, θ0} is

〈k j , j |V (r, r0)|ki, i〉 = e2

4πεL

∫ R

0
r dr

∫ 2π

0
dθ	∗

j(r, θ)	i (r, θ)

×
∫ ∞

−∞
dz

e−i(k j −ki )z

√
(r2 + r2

0 − 2rr0 cos(θ)) + (z − z0)2
(10)

where the azimuthal angle θ is measured from the direction of the impurity at θ0. Because
of the cylindrical symmetry the value of θ0 will not influence the scattering probability. The
quantity ε is the dielectric constant. It is well known [12] that due to screening of the Coulomb
interaction, in the strict degenerate limit of zero temperature the static dielectric function in
one dimension evaluated in a random phase approximation (RPA) has a divergence at twice
the Fermi vector, 2ki , for a channel. From our analysis above it is clear that for intra-channel
scattering at the degenerate limit the momentum change corresponds precisely to that value,
and therefore the dielectric constant also needs to be evaluated at that divergent point. However,
our interest is in the radial scaling of the mobility and not on evaluating its precise value, so
we adopt the assumption of low, but non-zero, temperature used in a similar context in [14],
whereby the divergence is removed leading to a well-defined dielectric function. The analysis
of [14] also showed that a doubling of the wire radius caused relatively small changes in the
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dielectric constant over a wide range of carrier densities. But as we will establish in this paper,
the effects of increasing radius on the mobility on the other hand is exponential in nature.
Therefore the dependence of the dielectric function on wire size should have little qualitative
impact on the radial scaling of the mobility. Hence we will treat the dielectric function as a
constant ε over the range of radii that we consider in this paper.

The transverse wavefunctions involve Bessel functions and for a wire of radius R are given
by

	i (r, θ) = eilθ

√
2π

Jl(κlnr)
R√
2

J ′
l (κln R)

. (11)

The various channels are labelled by two indices i ≡ l, n, with l corresponding to the order
of the Bessel functions Jl(κlnr), and n labelling the zeros for each order in a sequence of
increasing magnitude. The transverse eigenmodes are determined by the boundary condition
that the Bessel functions vanish on the surface of the wire Jl(κln R) = 0, with the zeros denoted
by pln = κln R.

We assume a azimuthally symmetric layer of impurities of bulk density ρ(r0) distributed
between radii r = a and r = b. On integrating over the impurity distribution we obtain the
scattering amplitude sum (3):
∑

k′
Sj,i (k′, k) = L

∫ b

a
dr0 2πr0ρ(r0)

∑

±

mL

h̄3k ′ |〈±kl′n′, l ′n′|V (r, r0)|kln, ln〉|2

= S+
l′n′,ln + S−

l′n′,ln (12)

with

S±
l′n′,ln = me4

2πε2h̄3 × 1

kl′n′

∫ b

a
dr0 r0ρ(r0)

∣∣∣∣
∫ R

0
rdr

∫ 2π

0

dθ

2π

Jl′ (κl′n′r)Jl(κlnr)ei(l′−l)θ

R2

2 J ′
l′(κl′n′ R)J ′

l (κln R)

× K0

(
|kln ∓ kl′n′ |

√
r2 + r2

0 − 2rr0 cos(θ)

)∣∣∣∣
2

.

The + sign corresponds to forward scattering (φ = 0) and the − to backscattering (φ = π).
Using this notation in equation (1) gives a system of linear equations for the relaxation times:
[

2S−
ln,ln +

∑

{l′n′}	={ln}

(
S+

l′n′,ln + S−
l′n′,ln

)]
τln +

∑

{l′n′}	={ln}

(
S−

l′n′,ln − S+
l′n′,ln

)
τl′n′ = 1. (13)

At zero temperature the matrix elements, like the relaxation times, are evaluated at the effective
Fermi wavevector kln for each channel. In the strict one-dimensional limit when only the
lowest channel is available we retrieve the well-known result τ−1 = 2S−

01,01 [11]. It has been
a common practice to assume that in thin wires the carriers may be assumed to be confined to
the wire axis, thereby justifying the usage of a δ-function to approximate the transverse profile
of the carrier density, in which case the matrix elements in equation (12) reduce to

S±
l′n′,ln 
 me4

2πε2h̄3kl′n′

∫ b

a
dr0 r0ρ(r0)K 2

0 [|kln ∓ kl′n′ |r0]. (14)

While this is mathematically simpler, we will presently show that this approximation is invalid
for the cases we consider.

4. Surface impurities

For some quasi-one dimensional nanowires, it is a good approximation to treat the impurities
as distributed in a layer of varying thickness outside the wire; this models surface roughness
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or modulation doping of dopants. We therefore take the scattering centres to be distributed in
a thin uniform layer of width w along the surface of the wire. First we take the bulk density of
the impurities to be constant within that layer ρ(r0) = ρB. We then write the matrix elements
in equation (12) in a way that makes the radial dependence more transparent:

S±
l′n′,ln = Q × (R/ l0)

2

ql′n′

∣∣∣∣
∫ 1

0
x dx

Jl′ (pl′n′ x)Jl(pln x)
1
2 J ′

l′ (pl′n′)J ′
l (pln)

×
∫ 2π

0

dθ

2π
ei(l′−l)θ K0

(
|ql′n′ ∓ qln|

√
1 + x2 − 2x cos θ

)∣∣∣∣
2

. (15)

Everything that does not depend on the radius has been included in the pre-factor Q which
contains all the dimensioned quantities. The rest of the expression contains only dimensionless
quantities as we have rescaled the lengths by the radius R, so that the integration variable is
x = r/R and the wavevectors are q = Rk. The scale and the dimension of the matrix element
are then set by the constant in front:

Q = me4l3
0 n

2πε2
0 h̄3 ×

[
1

ε2
s

m

me

ρB

n

w

l0

]
= 1.04 × 1015 s−1 ×

[
1

ε2
s

m

me

ρB

n

w

l0

]
. (16)

We have assumed a length scale of a nanometre l0 = 10−9 m along the radial direction, for
the wire radius R as well as for the width of the scattering layer w. We have also scaled the
impurity density ρB by the carrier density n. The dielectric constant of the wire is denoted
by εs.

Another advantage of writing the matrix elements this way lies in the fact that the factor
Q is common to all the matrix elements S±

l′n′,ln in the set of linear equations in equation (13).
We can therefore divide through by that factor, and since the multiplication of a column of a
determinant by a constant has the effect of multiplying the determinant by the same constant,
all the relaxation times τln for every channel carry a common factor of Q−1.

In certain cases it is more accurate to assume that the linear density of the impurities is
constant instead of the bulk density of impurities. In that case the radial scaling is somewhat
different; we then have to replace wρB → ρL/(2π R) so that the scattering matrix elements
are

S
′±
l′n′,ln = Q′ × (R/ l0)

q ′

∣∣∣∣
∫ 1

0
x dx

Jl′ (pl′n′ x)Jl(pln x)
1
2 J ′

l′ (pl′n′)J ′
l (pln)

×
∫ 2π

0

dθ

2π
ei(l′−l)θ K0

(
|ql′n′ ∓ qln|

√
1 + x2 − 2x cos θ

)∣∣∣∣
2

. (17)

The coefficient Q′ has the same scale factor as Q, but now the bulk impurity density and the
width of the impurity layer are replaced by a linear density of the impurities ρL, scaled by the
bulk carrier density and a nanoscale area element n × 2πl2

0 :

Q′ = me4l3
0n

2πε2
0 h̄3 ×

[
1

ε2
s

m

me

ρL

2πl2
0 n

]
. (18)

5. Results and discussion

We now proceed with numerical estimates for gallium arsenide (GaAs) for which our
assumption of parabolicity (2) is appropriate. Since we are interested mainly in the radial
scaling we present our results scaled by the common constant Q since it carries no radial
dependency. But it determines the intrinsic magnitude of the physical quantities; therefore,
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Table 1. The zeros pln of the Bessel functions, for the lowest transverse channels in a uniform
cylindrical wire, are listed along with the minimal values of the scaled wire radius n1/3 R at which
each channel becomes populated with charge carriers. For a bulk carrier density of n = 1024 m−3

that we use for numerical estimates, the right column would correspond to radii in units of
10−8 m = 10 nm.

pln n1/3 R

p0,1 = 2.404 82 0
p1,1 = 3.831 71 0.8455
p2,1 = 5.135 62 1.173
p0,2 = 5.520 07 1.305
p3,1 = 6.380 16 1.539
p1,2 = 7.015 59 1.706
p4,1 = 7.588 34 1.856
p2,2 = 8.417 24 2.048
p0,3 = 8.653 72 2.116

we first provide an estimate of its value for a GaAs nanowire. The effective mass for GaAs
is m = 0.068me, assumed the same for all the channels, and the dielectric constant is about
εs = 12, not significantly altered by screening at the high carrier density that we consider [14].
If we take the impurity density to be equal to the carrier density and the impurity layer to be
of the order of a nanometre thick w 
 10−9 m, we obtain a value of Q 
 4.9 × 1011 s−1. We
may then estimate the magnitude of the average mobility by writing it as

µ = e

Qm
θ(Ei)

∑
i qi [Qτi(qi)]∑

i qi
. (19)

The pre-factor contains all the dimensioned quantities and, for the above-mentioned value
of Q, it is e/(Qm) ∼ 5 × 104 cm2 V−1 s−1. Our numerical computation of the remaining
dimensionless part, presented below, then yields a mobility in the range 104−107 cm2 V−1 s−1,
which is consistent with the magnitudes in experimental measurements.

Having established the range of magnitudes of the mobility we now turn our attention to the
radial scaling. The numerical estimates assume a carrier density of 1018 cm−3 = 1024 m−3.
When all else is fixed the radius determines the number of channels available for transport
in equation (7). The minimal radii for each channel to be populated with carriers having
non-vanishing longitudinal energy are shown in table 1.

In figure 1(a) we plot the modified Bessel function of the second kind for the lowest
channel, K0(x, θ; q01) = K0(2q01

√
1 + x2 − 2x cos(θ)); it contains the effects of the Coulomb

scattering in the scattering matrix elements. In the x–θ plane, the function K0(x, θ; q01) is very
strongly peaked along the θ = 0 line; therefore, we specifically chose to plot K0(x, 0; q01). In
order to see the behaviour over the entire range of wire radii we present plots for the minimum
radius R = 5 nm and maximum radius R = 18.5 nm that we consider. Alongside we plot the
unnormalized radial profile of the carrier density in the lowest channel J01(p01x). We find that
the overlap of the carrier density profile J01(p01x) with the prominent region of K0(x, θ; q01)

decreases significantly with increased wire radius, indicating that an approximation that
replaces the radial profile with a delta function at the wire axis would deteriorate rapidly
with larger wire radius. That is exactly what we see in figure 1(b) where we plot the intra-band
scattering matrix element S−

01,01 for the lowest channel using first equation (12) which uses the
appropriate radial profile and secondly equation (14) which uses the δ-function approximation.
The two curves are noticeably different even for a wire radius of 5 nm, but for larger wire radii
they differ by several orders of magnitudes. This is exactly what one would expect for a surface
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Figure 1. (a) Plot of the radial profile of the carrier distribution of the lowest channel,
J01(p01x), shown alongside the radial dependence of the impurity scattering contained in the
factors K0(2q01|1 − x|) shown for the extreme values of the range of wire radii R that we consider.
(b) Semi-log plot of the scattering matrix element, scaled by the constant Q, for the lowest channel
with (thin line) and without (thick line) the δ-function approximation for the radial density of the
carriers.

distribution of impurities because the impurities are further removed from the wire axis for a
larger wire.

Figure 2 shows the scaling of the Fermi wavevector with the radius. We see that the
dimensionless product of the wire radius with the Fermi wavevector, R × kF, has an almost
monotonic growth with the radius. The Fermi vector itself decreases noticeably as each
new channel becomes available, and then rebounds gradually but with an overall decline
of the peak values reached before each succeeding channel enters. So the general trend is
that kF gets smaller with increasing radius; with a sufficiently large number of channels we
expect it to approach the bulk value which, for the carrier density we have assumed, would be
k3D

F = (3π210−24)1/3 ∼ 0.31 nm−1. Our plot suggests a gradual approach to that limit. That
limit gives a criterion for when the system makes the transition from quasi-1D to 3D.

We plot the mobility in figure 3 on a logarithmic scale to show that the growth of the
mobility with radius is of an exponential nature in between points of sharp declines. The most
striking feature is that the multichannel scattering destroys the simple monotonic growth of
the mobility seen with a single channel [11]. As the radius increases, and each new channel
becomes energetically available for scattering there is a sharp reduction in the average mobility.



Radial dependence of the carrier mobility in semiconductor nanowires 6683

0.48 8

6

4

2

0

0.46

0.44

0.42

0.4
5 7 9 11 13 15 17

k F
 (

na
no

m
et

re
s-

1 )

Radius (nanometres)

R kF

kF

Figure 2. The net Fermi wavevector kF =
√

2m EF/h̄2, for the carriers in the wire for a fixed carrier

density n = 1024 m−3, is plotted along the left axis as a function of the radius. The dimensionless
quantity RkF is plotted along the right axis.
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Figure 3. The mobility scaled by e/(Qm) is plotted on a logarithmic scale as a function of the
wire radius for fixed carrier n = 1024 m−3. The (l, n) label for each new channel is shown as it
becomes available causing the sharp declines in the mobility.

In between the addition of new scattering channels, the increasing wire radius causes the
mobility to grow, but that growth has an inflection point, reflecting the competition of that
tendency with increased inter-channel scattering. The sharp declines cause an overall lowering
of the mobility as the radius increases significantly. This is consistent with an eventual approach
to bulk behaviour.

We get a sense of the actual intrinsic magnitude of the mobility and its variations in
figure 4 where a linear scale is employed. This figure also illustrates the effect of changing
the radial scaling of the impurity density itself; we have plotted alongside the mobility for
the case described in equations (17) and (18) where regardless of the increased wire growth
the linear density of the impurity layer remains constant. Those equations show that there is
then an extra factor of R in the mobility, because the surface density becomes sparser with
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Figure 4. Plot of the scaled mobility versus the wire radius on a linear scale for constant bulk
density of surface impurities (thick line, along the left axis) and for constant linear density (thin
line, along the right axis). Note the scale factors are different for the two vertical axes, involving
Q and Q′ given by equations (16) and (18) respectively.

increased wire size; this causes the mobility to increase faster at larger radii as we see from the
plot. Otherwise the two curves are quite similar, implying that the essential features are not
affected significantly by the nature of the impurity distribution, because the strong exponential
behaviour of the modified Bessel functions K0 dominates the trend.

We have assumed a simple model which highlights general trends in the carrier mobility
and related parameters as a semiconductor nanowire deviates from the strict size quantization
limit towards bulk behaviour. Real semiconductor wires will not have a uniform cross-section,
and are likely to have impurities in the wire interior as well as on the surface, so the behaviour
we have seen will therefore likely be less sharp. Moreover, it is known that screening affects
intra-band scattering more significantly [16, 23] than it does inter-band scattering. So a more
accurate treatment of the dielectric function is likely to diminish the changes in the mobility as
new channels become available. However, some recent works [24] indicate that a more rigorous
treatment of impurity scattering could actually lead to higher values of the single channel
mobility, in the regimes we consider, than those obtained using Fermi’s Golden rule. This
could actually contribute to accentuating the multichannel effects on the mobility by raising
the maximum value it attains before undergoing a sharp drop due to a new scattering channel.
The general trends we have established are sufficiently striking that those features would be
relevant in experimentally observed behaviour of the mobility as the wire size is increased. In
particular the effect of inter-channel scattering should be manifest in the degenerate limit.
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